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Volumen 13, Número 1, Abril 2013

ISSN 1665-2738

1

Vol. 13, No. 1 (2014) 259-277

LOW-RAM ALGORITHM FOR SOLVING 3-D NATURAL CONVECTION
PROBLEMS USING ORTHOGONAL COLLOCATION

ALGORITMO DE BAJO CONSUMO DE RAM PARA RESOLVER PROBLEMAS DE
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Abstract
Computational code IMPLI-C3 is a low-RAM consumption program designed to solve three-dimensional parabolic
partial differential nonlinear equations. The spatial coordinates are discretized using orthogonal collocation with
Legendre polynomials while time was discretized via backward finite differences, generating an implicit method that
originates a set of algebraic equations, which are solved by nonlinear relaxation for each step of time integration.
Nonlinear relaxation is an iterative method that only uses the Jacobian diagonal and voids the RAM storage of
the entire Jacobian matrix. This allows the simulation of physical systems that require greater number of nodes
that otherwise would use too much RAM when trying to solve by Newton-Raphson. The code was successfully
evaluated using several problems related to natural convection previously reported in literature, observing that
nonlinear relaxation only requires 0.3%-1.5% of the memory required by Newton-Raphson for the same problems.
Furthermore, one can be conclude that, in problems with many nodes, the use of multivariate Newton-Raphson is
unfeasible due to high consumption of RAM that can even cause it to overflow.

Keywords: nonlinear relaxation, natural convection, orthogonal collocation, parabolic partial differential equations.

Resumen
IMPLI-C3 es un código computacional que utiliza bajos recursos de memoria RAM, diseñado para resolver

ecuaciones diferenciales parciales parabólicas no lineales en tres dimensiones. Los ejes coordenados en el espacio
se discretizaron usando colocación ortogonal con polinomios de Legendre mientras que el tiempo se discretizó
mediante diferencias finitas hacia atrás, generando un esquema implı́cito que origina un conjunto de ecuaciones
algebraicas, las cuales se resolvieron mediante relajación no lineal para cada etapa de integración en el tiempo.
La relajación no lineal, es un método iterativo que emplea solamente la diagonal del Jacobiano para evitar que
se almacene toda la matriz Jacobiana en la memoria RAM de la computadora. Lo anterior permite la simulación
de sistemas fı́sicos que requieren mayor cantidad de nodos que, de otra manera emplearı́an demasiada RAM al
intentar resolverlos mediante Newton-Raphson. El código se evaluó satisfactoriamente usando varios problemas
relacionados con el fenómeno de convección natural previamente reportados en la literatura, observando que el
método de relajación no lineal solamente utiliza entre 0.3% a 1.5% de la memoria con respecto al método de
Newton-Raphson. Además se pudo corroborar que, en problemas con muchos nodos, el uso de Newton-Raphson
multivariable no es factible debido al consumo elevado de memoria RAM que, inclusive puede provocar su
desbordamiento.

Palabras clave: relajación no lineal, convección natural, colocación ortogonal, ecuaciones diferenciales parciales
parabólicas.
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1 Introduction

Many problems in the field of Chemical Engineering
are modeled as nonlinear partial parabolic differential
equations (PDE). Most have only numerical solutions.
There are several commercial programs uniquely
designed to solve PDE in specific situations,
decreasing the versatility of these software. These
programs mainly use finite difference or finite element
methods, requiring very fine mesh to solve highly
nonlinear problems. Therefore, the primary reason to
develop a computer code is to increase versatility,
especially for highly nonlinear parabolic PDE 3-D
problems.

The choice of orthogonal collocation as
discretization method is based on its greater precision
compared to other well-known methods, such as
finite difference. Orthogonal collocation gives smaller
margins of error in solutions with the same mesh
than other methods (Jiménez-Islas and López-Isunza,
1996; Ebrahimi et al., 2008). Villadsen and Stewart
(1967) reported several problems focused on chemical
engineering, proposing the application of orthogonal
collocation to solve differential equations with
boundary values. Subsequently, other authors began to
expand its use (Ebrahimi et al., 2008; Finlayson, 1972;
Jiménez-Islas and López-Isunza, 1994; Jiménez-Islas,
2001; Barrozo et al., 2006).

The objective of this study is to design an all-
purpose computer program that is able to solve in three
spatial dimensions any system of nonlinear parabolic
PDE 3-D that is presented in dynamic simulation of
processes using the orthogonal collocation method for
the discretization of the spatial coordinates (Villadsen
and Stewart, 1967; Finlayson, 1980; Jiménez-Islas and
López-Isunza, 1994) and backward finite differences
of the time variable. With the application of the
implicit method, a set of nonlinear algebraic equations
was obtained. These equations then are solved with
nonlinear relaxation (Vemuri and Karplus, 1981) and
do not require a special reordering of the governing
equations to solve them, unlike other existing solution
methods that require specific algebraic arrangements
that can be difficult to implement in nonlinear cases.
Furthermore, the use of nonlinear relaxation does not
require larger RAM such as Newton-based methods,
and it is easy to code in any computer language, since
operations between vectors are used, while in Newton
methods matrix operations are required.

2 Methodology
The basis of the approximation of differential
operators via orthogonal collocation requires that the
points or nodes correspond to roots of orthogonal
polynomials when the residue is zero, Legendre,
Jacobi, Hermite, Laguerre, etc. In this work, we used
Jacobi polynomials, presented in equation (1). If the
coefficients α = β = 0, equation (1) reduces the
orthogonal polynomial to Legendre type.

1∫
0

xα(1 − x)βP j(x)PN(x)dx = 0 (1)

In a 2-D domain, the approximation of the solution has
the following form:

Ti j =

NX+2∑
k=1

bik xk−1
i j (2)

Developing the first and second derivative, the
following equations were obtained:(

dT
dx

)
i j

=

NX+2∑
k=1

bik(k − 1)xk−2
i j (3)

(
d2T
dx2

)
i j

=

NX+2∑
k=1

bik(k − 1)(k − 2)xk−3
i j

(4)

Where xi j represents the nodes of collocation
defined by the roots of orthogonal polynomials used,
that represent the points where approximation of
differential operators is performed. Generalizing the
above equations over the entire domain, we obtained
the following equations in matrix notation (Finlayson,
1972, 1980; Jiménez-Islas and López-Isunza, 1994).

T = Qb (5)
dT
dx

= Cb (6)

d2T
dx2 = Db (7)

Where

Qik = xk−1
ii (8)

Cik = (k − 1)xk−2
ii (9)

Dik = (k − 1)(k − 2)xk−3
ii (10)

Solving for b gives the following:

b = Q−1T (11)
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Substituting the expression (11) in (6) and (7) yields
the following:

dT
dx

= CQ−1T = AT (12)

d2T
dx2 = DQ−1T = BT (13)

Where A and B are the collocation matrices
that approximate the first and second derivative,
respectively. Expanding these definitions to three
spatial coordinates gives the following equations
(Jiménez-Islas, 2001):

∂T
∂x

=

NX+2∑
p=1

AXipTp jk (14)

∂2T
∂x2 =

NX+2∑
p=1

BXipTp jk (15)

∂T
∂y

=

NY+2∑
p=1

AY jpTipk (16)

∂2T
∂y2 =

NY+2∑
p=1

BY jpTipk (17)

∂T
∂z

=

NZ+2∑
p=1

AZkpTi jp (18)

∂2T
∂z2 =

NZ+2∑
p=1

BZkpTi jp (19)

The orthogonal collocation method includes all nodes
present in the discretization of partial derivatives
and generates greater accuracy with smaller meshes
than finite differences (Jiménez-Islas, 1999; Jiménez-
Islas, 2001). By using a finite backward difference
in time, which produces a system of nonlinear
algebraic equations that resolves simultaneously
for each integration step. The implicit method is
unconditionally stable and less dependent on the size
of stages that occur in explicit methods (Vemuri and
Karplus, 1981). The numerical solution of systems
in three dimensions using orthogonal collocation
requires the generation of a large matrix that increases
geometrically with the number of nodes. It is
necessary to find a method that does not require
the RAM storage of the Jacobian matrix of Newton-
Raphson method. Nonlinear relaxation is one of the
alternative methods, which consists of applying a
one-dimensional Newton-Raphson to each equation
to achieve convergence. Therefore, we only use the
diagonal of the Jacobian matrix (Vemuri and Karplus,

1981). Equation (20) shows a relaxation scheme in a
nonlinear variant, where λ is a relaxation factor that
accelerates and achieves convergence, and determines
the dimensional displacement of the solution.

xk+1
i = xk

i − λ
fi
(
xk+1

1 , xk+1
2 , . . . , xk

i , . . . , x
k
n

)
∂ fi
∂xi

∣∣∣∣ (xk+1
1 , xk+1

2 , . . . , xk
i , . . . , x

k
n

) (20)

The convergence ratio of nonlinear relaxation depends
of the initial value of λ and, in higher nonlinear
problems, requires commonly many iterations to
achieve the fixed tolerance. However, the iterations
run quickly and are easy to code for parallel
platforms. Typically, one can propose an initial
value of λ = 0.5 for exploring convergence. Taking
the considerations discussed above, we developed a
program coded in FORTRAN 90 called IMPLI-C3.
This computational code can be used interchangeably
on x86 platforms, workstations and supercomputers
(using parallel processing). In addition, we developed
an easy notation for feeding PDE and their boundaries
and initial conditions in an IMPLI-C3 subroutine.
For example: T1 is T (1), ∂T1

∂x is TX(1), ∂2T2
∂z2 is

TZZ(2), etc. This notation was used successfully in
other computer codes (Jiménez-Islas, 1999; Jiménez-
Islas, 2001; Carrera-Rodrı́guez et al, 2011). For
the simulations, we used a midrange computer with
microprocessor Intel CoreT M 2 Duo E4500, 2.20 GHz
with 2 Gb RAM, Windows XPT M and COMPAQT M

Visual FORTRAN compiler v. 6.6c.
To assess the reliability of IMPLI-C3 software, the

computer code was validated with four study cases,
three of which are related to natural convection. Case I
is a designed system of coupled nonlinear parabolic
PDE that has an analytical solution and allows us
to analyze the error rate via a mesh independence
analysis. The remaining cases are associated with
natural convection phenomenon defined as heat or
mass transport due buoyancy forces. There exists a
great diversity of buoyancy flows in enclosures that are
of interest in science and technology. These buoyancy
flows involve challenging physical and mathematical
problems as the coupling of the flow and transport and
of the boundary layer and core flows, the interaction
between the flow and the driving force, which alters
the regions in which the buoyancy acts, and the
occurrence of multicellular flow. (Ostrach, 1988;
Nield and Bejan, 1992, Jiménez-Islas, 1999).

The second case enhances the utility of the
increment of nodes close the boundaries in a
cylindrical geometry problem with asymmetric
behavior (Ozoe and Toh, 1998). The third case is
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the classical problem of natural convection in a
cubical cavity, which is often used as a benchmark
for assessing new algorithms or codes (De Vahl
Davis, 1983; Bessonov et al., 1998; Tric et al., 2000;
Wakashima and Saitoh, 2004; Ravnik et al., 2008;
Brahim and Taieb, 2009). The fourth case, which
is an application of this code to solve the problem
of natural convection in grain storage in cylindrical
silos, demonstrates the robustness of IMPLI-C3 in
solving complex problems. The convergence criterion
is (Carrera-Rodrı́guez et al., 2011) as follows:∣∣∣∣ fi (xk+1

1 , xk+1
2 , . . . , xk

i , . . . , x
k
n

)∣∣∣∣ ≤ 10−5

for all discretized equations (21)

3 Results and discussion

3.1 Case I: A system of two coupled
nonlinear PDE with known analytical
solution

In this study case, we constructed an arbitrary system
of 3-D parabolic PDE with analytical solution, the
equations were:

∂T1

∂t
=
∂2T1

∂X2 +
∂2T1

∂Y2 +
∂2T1

∂Z2 −
∂T1

∂X
∂T2

∂Y
− ∂T1

∂Y
∂T2

∂Z
+ T2 + e−t

(
4Y3 − Y2 − Z

)
+ 24X2YZ − X

(
3Z2 + 4

)
(22a)

∂T2

∂t
=
∂2T2

∂X2 +
∂2T2

∂Y2 +
∂2T2

∂Z2 − T2
∂T1

∂X
− T1

∂T2

∂Z
+ e−t

(
6XZ2 + 2Y4 − Y2 − 2

)
+ 12X2Y2Z + 6X

(
Y2Z2 − 1

)
(22b)

With the following boundary and initial conditions:

X = 0, T1 = Ze−t,T2 = Y2e−t (23a)

X = 1,
∂T1

∂X
= 2Y2,

∂T2

∂X
= 3Z2 (23b)

Y = 0, T1 = Ze−t,T2 = 3XZ2 (23c)

Y = 1,
∂T1

∂Y
= 4X,

∂T2

∂Y
= 2e−t (23d)

Z = 0, T1 = 2XY2,T2 = Y2e−t (23e)

Z = 1,
∂T1

∂Z
= e−t,

∂T2

∂Y
= 6X (23f)

t = 0, T1 = 2XY2 + Z,T2 = 3XZ2 + Y2 (23g)

The system was discretized with 7 × 7 × 7, 9 × 9 × 9,
13×13×13, 15×15×15, and 21×21×21 orthogonal

Table 1. Analysis of mesh independence in Case I,
using the average error of the variables T1 and T2

Mesh Iterations Error T1 Error T2

7×7×7 49143 6.4 % 5.1 %
9×9×9 85078 5.1 % 3.6 %

13×13×13 205671 4.1 % 2.2 %
15×15×15 289312 3.9 % 1.9 %
21×21×21 642630 3.5 % 1.4 %

collocation internal points with Legendre polynomials
and integrated from t = 0 to t = 2 with 200 steps,
a relaxation factor λ of 0.7 and a tolerance of 10−5.
We also carried out the calculation of the relative
errors of each variable for t = 2 and verified the
error diminishing and the iterations increasing with
increasing the mesh size. These data, shown in Table
1, were compared with the analytic solution of the
coupled parabolic PDE: T1 = 2XY2 + Ze−t and T2 =

3XZ2 + Y2e−t.
The simulations were continued with the

integration of the system until steady state was reached
at t = 10 (transient term average value equal to 10−5).
Fig. 1 depicts a comparison of isosurfaces of the
variables T1 and T2, including both the numerical and
analytical results, confirming an excellent agreement.

3.2 Case II: Free convection in a cylinder

We have analyzed the 3-D natural convection in
a cylinder in which a point of singularity occurs
along the axial axis if the problem is modeled
using cylindrical coordinates. Ozoe and Toh (1998)
have suggested solving the problem using asymmetric
boundary conditions so that the values of nodes
located in the axial axis are approximated via
the average of adjacent nodes. The Navier-Stokes
and energy balance equations were solved using
Boussinesq approximation (Leonardi, 1984) and
Vector Potential-Vorticity (VP-V) formulation, where
the pressure and the velocity fields were become to
a new expression known as vector potential ψ, which
represent a fluid rotational normal vector related to the
momentum equations (Roache, 1972) for Pr = 1 and
Ra = 103 (Ozoe and Toh, 1998).
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Potential Vector Equations:

ωr = −
(
∂2ψr

∂ξ2 +
1
ξ

∂ψr

∂ξ
− ψr

ξ2 +
1

4π2ξ2

∂2ψr

∂η2 −
2

4π2ξ2

∂ψθ
∂η

+
1

A2

∂2ψr

∂ζ2

)
(24a)

ωθ = −
(
∂2ψθ

∂ξ2 +
1
ξ

∂ψθ
∂ξ
− ψθ
ξ2 +

1
ξ2

∂2ψθ

4π2∂η2 +
2
ξ2

∂ψr

∂η
+

1
A2

∂2ψθ

∂ζ2

)
(24b)

ωz = −
(
∂2ψz

∂ξ2 +
1
ξ

∂ψz

∂ξ
+

1
ξ2

∂2ψz

4π2∂η2 +
1

A2

∂2ψz

∂ζ2

)
(24c)

Vorticity Equations:

∂ωr

∂Fo
=




ωr

(
1

4π2ξ

∂2ψz

∂ξ∂η
− 1

4π2ξ2

∂ψz

∂η
− 1

A2

∂2ψθ
∂ξ∂ζ

)
+ ωθ


1

16π4ξ2

∂2ψz

∂η2 −
1

4π2ξA2

∂ψθ
∂η∂ζ

+
1

4π2ξ

∂ψz

∂ξ
− 1

4π2ξA2

∂ψr

∂ζ


+ωz

(
1

4π2ξA2

∂2ψz

∂ζ∂η
− 1

A4

∂2ψθ

∂ζ2

)


−


(

1
4π2ξ

∂ψz

∂η
− 1

A2

∂ψθ
∂ζ

) (
∂ωr

∂ξ

)
+

(
−∂ψz

∂ξ
+

1
A2

∂ψr

∂ζ

) (
1

4π2ξ

∂ωr

∂η
− ωθ

4π2ξ

)
+

(
∂ψθ
∂ξ

+
ψθ
ξ
− 1

4π2ξ

∂ψr

∂η

) (
1

A2

∂ωr

∂ζ

)



+ Pr

(
∂2ωr

∂ξ2 +
1
ξ

∂ωr

∂ξ
− ωr

ξ2 +
1

4π2ξ2

∂2ωr

∂η2 −
2

4π2ξ2

∂ωθ
∂η

+
1
A2

∂2ωr

∂ζ2

)
+ RaPrA

(
1

4π2ξ

∂θ

∂η

)

(24d)

∂ωθ
∂Fo

=




ωr

(
1
A2

∂ψr

∂ξ∂ζ
− ∂

2ψz

∂ξ2

)
+ ωθ


1

4π2ξA2

∂2ψr

∂η ∂ζ
− 1
ξA2

∂ψθ
∂ζ

− 1
4π2ξ

∂2ψz

∂η ∂ξ
+

1
4π2ξ2

∂ψz

∂η


+ωz

(
1
A4

∂2ψr

∂ζ2 −
1

A2

∂2ψz

∂ξ ∂ζ

)


−


(

1
4π2ξ

∂ψz

∂η
− 1

A2

∂ψθ
∂ζ

) (
∂ωθ
∂ξ

)
+

(
−∂ψz

∂ξ
+

1
A2

∂ψr

∂ζ

) (
1

4π2ξ

∂ωθ
∂η

+
ωr

ξ

)
+

(
∂ψθ
∂ξ

+
ψθ
ξ
− 1

4π2ξ

∂ψr
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Energy Equation:
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Fig. 1. Comparison of numerical and analytical isosurfaces T1 and T2 at t = 2.0, for Case I. 
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Fig. 1. Comparison of numerical and analytical isosurfaces T1 and T2 at t = 2.0, for Case I.
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After dimensionless procedure and the VP-V
methodology, appear terms that relate the system
characteristics. Rayleigh number (Ra) indicates the
relative magnitude of buoyancy driven flow due to
differences of temperature and density. Prandtl number
(Pr) is the rate of momentum and thermal diffusivities,
giving a measurement of the transport hydrodynamic
and energy efficiency, and the geometric relation (A)
is just as the cavity changes in dimensions.

We have used an average of the node values around
the center (r = 0) to define the boundary condition
in this point (Ozoe and Toh, 1998). The cylinder
walls shows no-slip condition for the vector potential,

and vorticity is modeled using Wood’s approximation
(Roache, 1972) (ξ = 1, ζ = 0, ζ = 1), and
equality in field and flux in the azimuthal coordinate (0
and 2π, respectively). Temperature remained constant
at the bottom, top and halfway around the cylinder
with sinusoidal variation and was proven for the two
cases used by Ozoe and Toh (1998) shown in Fig.
2. The problem was solved using 9 nodes to radial
and axial and 15 azimuthally nodes. This gridding was
employed to improve the calculation of the azimuthal
coordinate. Fig. 3 shows the coordinate system and the
mesh grid used in the numerical experiment.

9 
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Fig. 2. Temperature boundary conditions used. Top views of the cylinder with thermal 60 
boundary conditions for two systems of sample computation: a) model A, b) model B taken 61 
from Ozoe and Toh (1998). 62 
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Fig. 2. Temperature boundary conditions used. Top views of the cylinder with thermal boundary conditions for two
systems of sample computation: a) model A, b) model B taken from Ozoe and Toh (1998).
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Fig. 3. Cylindrical mesh for sample computations in Case II. 67 
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Fig. 3. Cylindrical mesh for sample computations in Case II.
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Fig. 4. Comparative case A, Top views of the isotherms at Fo = 0.35, a) ζ = 0.5, b) ζ= 
12.5/13, and side view in the vertical plane c) θ = 0 and θ = π. The black-line plots were 
taken from Ozoe and Toh (1998) for comparison purposes. 

Fig. 4. Comparative case A, Top views of the isotherms at Fo = 0.35, a) ζ= 0.5, b) ζ= 12.5/13, and side view in
the vertical plane c) θ = 0 and θ = π. The black-line plots were taken from Ozoe and Toh (1998) for comparison
purposes.
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Fig. 5. Comparative case B, Top views of the isotherms at Fo=0.45, a) =0.5/13 ζ b) 
=12.5/13 ζ  and side view in the vertical plane c) 0η =  and η π=  d) / 6η π= and 
7 / 6η π= e) 2 / 6η π=  and 8 / 6η π= . The black-lines plots were taken from Ozoe and 

Toh (1998) for comparison purposes. 

Fig. 5. Comparative case B, Top views of the isotherms at Fo=0.45, a) ζ = 0.5/13 b) ζ = 12.5/13 and side view in
the vertical plane c) η = 0 and d) η = π and e) η = 2π/6 and η = 8π/6. The black-lines plots were taken from Ozoe
and Toh (1998) for comparison purposes.
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Fig. 4 and Fig. 5 show the dynamics of the isotherms
compared with the plots reported by Ozoe and Toh
(1998) in the equivalent time of the simulation
performed by the authors using another dimensional
relationship.

IMPLI-C3 code can successfully recreates the
problem using orthogonal collocation with Legendre
polynomials. The central average can circumvent
the singularity at the axial axis and demonstrate
the advantage of the orthogonal collocation method,
which increases the number of nodes in critical
regions, such as near the boundaries.

3.3 Case III: Dynamics of natural
convection in a differentially heated
cubic cavity

The explanation of buoyancy-driven flow and heat
transfer in a cubical cavity is a simple model problem
of considerable practical interests as design of air-
conditioning systems, storage of fruits and vegetables,
food drying equipment, storage of cereal grains at
silos, etc. The problem also provides an excellent
test of numerical methods and computer codes used
for the calculation of viscous convective flows. (De
Vahl Davis, 1983; Bessonov et al., 1998; Tric et
al., 2000; Wakashima and Saitoh, 2004; Ravnik et
al., 2008; Brahim and Taieb, 2009; Lo et al., 2007).

The problem was analyzed using the Navier-Stokes
equations in the form of velocity-vorticity (VV); this
methodology removes the pressure term using curl to
the momentum equation, and reduces expressions with
vector properties to obtain a new variable denoted as
vorticity.

Natural convection can analyze the transition
effects between laminar and turbulent flow, with low
viscosity fluids or higher temperature difference, that
originate the development of important buoyancy
effect that increases the fluid velocity, this buoyancy
was modeled using Boussinesq approximation
(Leonardi, 1984; Nield and Bejan, 1992).
Velocity-Vorticity Equations (VV):
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Vorticity equations:
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Energy balance:
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Boundary conditions:

X = 0, X = 1, U = 0, ωx = 0, ωy = −∂Uz

∂X
, ωz =

∂Uy

∂X
, θ = −0.5 (29a)

Y = 0,Y = 1, U = 0, ωx =
∂Uz

∂Y
, ωy = 0, ωz = −∂Ux

∂Y
,

∂θ

∂Y
= 0 (29b)

Z = 0,Z = 1, U = 0, ωx = −∂Uy

∂Z
, ωy =

∂Ux

∂Z
, ωz = 0,

∂θ

∂Z
= 0 (29c)
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All initial conditions start at zero.
The global Nusselt number represents the

dimensionless rate of change of heat transfer across
boundary in the hot wall (De Vahl Davis, 1983;
Bessonov et al., 1998; Tric et al., 2000; Wakashima
and Saitoh, 2004; Ravnik et al., 2008; Brahim and
Taieb, 2009; Lo et al., 2007):

Nu =

∫ 1/2

−1/2

∫ 1/2

−1/2

∂ (Y,Z)
∂X

∣∣∣∣∣
X=1/2

dYdZ (30)

The simulations were performed for Pr =0.71, Ax=1,
Ay=1, Az=1, Ra = 103, 104, and 105 with a mesh of
113 and 173 internal nodes within a tolerance of 10−4,

carrying out the time integration to Fo = 0.5 using
a relaxation factor of λ= 0.3 in the solution of the
discretized equations. The results of the iterations and
the Nusselt number are presented in Table 2.

Table 3 shows the comparison of the Nusselt
number at different values of Ra. Table 4 details the
maximum velocity compared to values obtained in
previous experiments conducted by others authors.
With a coarse grid, the values are in agreement with
those reported with finer meshes. Also Fig. 6, shows
the dynamics of the isotherms for Ra = 105 obtaining
the well-known behavior of natural convection in the
cubical cavity.

Table 2. Computational runs to verify the mesh independence of Case III

Ra Mesh Time increment (∆Fo) Relaxation factor λ Final Time (Fo) Iterations Nu

103 13×13×13 0.005 0.3 0.5 34009 1.0698
103 19×19×19 0.005 0.3 0.5 89249 1.0698
104 13×13×13 0.005 0.3 0.5 58420 2.0604
104 19×19×19 0.005 0.3 0.5 149990 2.0615
105 13×13×13 0.005 0.3 0.5 112791 4.4031
105 19×19×19 0.005 0.3 0.5 314255 4.3495

Table 3. Comparison of Nusselt number reported for the Case III

Bessonov Tric Wakashima Lo et al. Ravnik Brahim and This
et al. (1998) et al. (2000) and Saitoh (2004) (2007) et al. (2008) Taieb (2009) work

Mesh 85×65×65 813 1203 413 253 483 173

Nu Ra=103 - 1.0700 - 1.0700 1.0713 1.07124 1.06979
Ra=104 2.055 2.0542 2.0624 2.0540 2.0591 2.05604 2.06194
Ra=105 4.339 4.3370 4.3665 4.3350 4.3570 4.34320 4.34951

Table 4. Comparison of Nusselt number and maximum velocity reported for Case III.

Brahim and Taieb (2009) Lo et al. (2007) Tric et al. (2000) This work

Mesh 483 413 813 173

Ra=103

Nu 1.07124 1.0710 1.0700 1.06979
Umax 3.53509 3.5227 3.54356 3.53007
Vmax 0.17137 0.1726 0.17331 0.13516
Wmax 3.54163 3.5163 3.54469 3.54415

Ra=104

Nu 2.05604 2.0537 2.0542 2.06194
Umax 16.68785 16.5312 16.71986 16.91797
Vmax 2.15437 2.1092 2.15657 1.89773
Wmax 18.96319 18.6971 18.98359 19.0026

Ra=105

Nu 4.34320 4.3329 4.3370 4.34951
Umax 43.84633 43.6877 43.9037 44.84974
Vmax 9.63815 9.3720 9.6973 8.64359
Wmax 71.02273 70.6267 71.0680 74.51753
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Fig. 6. Dynamic temperature isosurfaces for values of Ra=10 5 for: a) Fo = 0.005, b) Fo = 0.1, c) 
Fo = 0.25, and d) Fo = 0.5 
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Fig. 6. Dynamic temperature isosurfaces for values of Ra=105 for: a) Fo = 0.005, b) Fo = 0.1, c) Fo = 0.25, and d)
Fo = 0.5.

3.4 Case IV: Effect of temperature on
natural convection in grain storage in
cylindrical silos

Temperature and moisture are the most important
factors that affect grain quality during storage at
silos or bins. To improve these systems, it is
needed accurate knowledge of the variation in
temperature and moisture distribution during large
periods. Temperature can be modified by both
internal and external heat sources, changing the grain
moisture equilibrium conditions in the cereal grain.

Internal sources are related with grain respiration,
insects and fungi proliferation, highly dependent of
temperature and relative humidity of interstitial air.
Instead, external sources are linked to environmental
variation conditions in the storage period. Temperature
gradients in the cereal grain favoring moisture
migration from warmer to colder regions and this
produce grain deterioration (Jimenez-Islas et al., 2004;
Abalone et al., 2006; Balzi et al., 2008). Given
the economic importance of cereal grains production,
the simulation techniques aid to achieve strategies
to assess a safe storage in unventilated silos. The
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numerical modeling is a useful tool to predict potential
damage and provide storage conditions with particular
environmental characteristics.

In this case, to obtain the mathematical model
that governs the natural convection of heat and mass
for grain storage in cylindrical silos, we considered
a silo of radius R and height L that contains a
Darcian, isotropic porous medium with interstitial
spaces saturated with air. The intergranular air has an
initial absolute humidity Y0 (kg H2O/kg dry air) and
a dry-bulb temperature T0. The bottom of the silo is
insulated and the environmental temperature versus
time is modeled via a fitted equation on the upper
surface and lateral wall of the silo (Carrera-Rodrı́guez
et al., 2011). In addition, the silo is impermeable, fluid
flow is in laminar regime and ideal gas behavior.

The effect of the water activity of the grain
(aw), volumetric heat of respiration as a function of
temperature, buoyancy effects due to temperature and
concentration gradient (double diffusion effect) and
latent heat of vaporization are all taken into account.

The equilibrium of humidity in the grain-air
interface (Yi) is defined as follows:

Yi =
18Pv

0aw

29(p − Pv
0aw)

(31)

Where:
p = Atmospheric pressure
aw = Water activity of the grain (calculated from

the sorption isotherm)
P0

v = Vapor pressure for water (Jiménez-Islas et al.,
2004).

To obtain the thermodynamic properties of cereal
grains, sorghum was used as an example. The values
in equations (16) to (19) were changed to those
corresponding to the grain of interest. The data for
the heat of respiration (Q0) of sorghum reported by
Mohsenin (1980) were adjusted using an exponential
model by the least squares method yielding equation
(17).

Q0 = 1.837 × 10−9e(−6.5351+0.4604T−0.006526T 2)

e87.804x tanh(0.00269x) (32)

Where:
4.4 oC < T < 37.8 oC, 0.12 < x < 0.21, Q0 = J/kg

sorghum · s
x = Sorghum moisture in wet basis
x = X/(X + 1)
To calculate the generation of water (P0) due the

grain metabolism, the stoichiometry of the global
reaction was used in correlation with the heat
generation (Wilson, 1999). The calculations gave the
following equation:

P0 = 3.4118 × 10−8Q0, (33)

where P0 is given in kg H2O / kg sorghum · s.
The sorption isotherm for the sorghum is as follows
(Brooker et al., 1974):

aw = 1 − exp
[− exp (29.18 − 4.086 ln(T + 273.15)

+6.0346 ln x − 0.0105614(T + 273.15) ln x)] (34)

The vapor pressure of water according to the Antoine
equation is as follows:

Pv
0 = exp

(
18.304 − 3816.44

T − 227.02

)
(35)

10 oC < T < 150 oC, P0
v [=] mm Hg.

Sorghum has a proximate composition on a
dry basis of 11.82% protein, 80.57% carbohydrates,
3.52% lipids, 2.27% fiber, and 1.82 % ash (Woot-
Tsuen and Flores, 1970); the sorghum grain has an
average diameter of 0.003 m. The grain was stored
in a small commercial cylindrical bin that was 1.33
m in radius and 2.76 m in height with a 15.3 m3

grain capacity. The initial temperature of sorghum
was 30 oC with 16% moisture (dry basis), while
the environmental temperature was 25 oC with a
relative humidity of 50% and an atmospheric pressure
of 600 mm Hg. These conditions are typical in the
Bajio, the agricultural region located in Guanajuato
state, Mexico (Jiménez-Islas et al., 2004). Applying
the methodology described in Case II, the governing
equations are as follows:
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4π2ξ2

∂2ψz

∂η2 +
1

A2

∂2ψz

∂ζ2

)
(36c)
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Vorticity equations:

∂ωr

∂Fo
= − Pr

Da
ωr + Pr

(
∂2ωr

∂ξ2 +
1
ξ

∂ωr

∂ξ
− ωr

ξ2 +
1

4π2ξ2

∂2ωr

∂η2 −
2

4π2ξ2

∂ωθ
∂η

+
1

A2

∂2ωr

∂ζ2

)
+ RaPrA

[
1

4π2ξ

∂θ

∂η
+

N
4π2ξ

∂φ

∂η

]
(36d)

∂ωθ
∂Fo

= − Pr
Da

ωθ + Pr
(
∂2ωθ

∂ξ2 +
1
ξ

∂ωθ
∂ξ
− ωθ
ξ2 +

1
4π2ξ2

∂2ωθ

∂η2 +
2
ξ2

∂ωr

∂η
+

1
A2

∂2ωθ

∂ζ2

)
− RaPrA

[
∂θ

∂ξ
+ N

∂φ

∂ξ

]
(36e)

∂ωz

∂Fo
= − Pr

Da
ωz + Pr

(
∂2ωz

∂ξ2 +
1
ξ

∂ωz

∂ξ
+

1
4π2ξ2

∂2ωz

∂η2 +
1

A2

∂2ωz

∂ζ2

)
(36f)

Energy balance:

∂θ
∂Fo = −

[(
1

4π2ξ
∂ψz
∂η
− 1

A2
∂ψθ
∂ζ

)
∂θ
∂ξ

+ 1
4π2ξ

(
− ∂ψz

∂ξ
+ 1

A2
∂ψr
∂ζ

)
∂θ
∂η

+ 1
A2

(
∂ψ

θ

∂ξ
+

ψ
θ

ξ
− 1

4π2ξ
∂ψr
∂η

)
∂θ
∂ζ

]
+ ∂2θ
∂ξ2 + 1

ξ
∂θ
∂ξ

+ 1
4π2ξ2

∂2θ
∂η2 + 1

A2
∂2θ
∂ζ2 +

Q0ρsR2

(T1−T0)ke f f
− λvkyavρa(Yi−[Y0+φa(Y1−Y0)])R2

(T1−T0)ke f f

(36g)

Grain moisture balance:

∂φs

∂Fo
=

1
Les

(
∂2φs

∂ξ2 +
1
ξ

∂φs

∂ξ
+

1
4π2ξ2

∂2φs

∂η2 +
1

A2

∂2φs

∂ζ2

)
+

P0ρsR2

ρsα(X1 − X0)
− kyavρa(Yi − [

Y0 + φa(Y1 − Y0)
]
)R2

ρsα(X1 − X0)
(36h)

Air humidity balance:

∂φa
∂Fo = −

[(
1

4π2ξ
∂ψz
∂η
− 1

A2
∂ψθ
∂ζ

)
∂φa
∂ξ

+ 1
4π2ξ

(
− ∂ψz

∂ξ
+ 1

A2
∂ψr
∂ζ

)
∂φa
∂η

+ 1
A2

(
∂ψ

θ

∂ξ
+

ψ
θ

ξ
− 1

4π2ξ
∂ψr
∂η

)
∂φa
∂ζ

]
+ 1

Lea

(
∂2φa
∂ξ2 + 1

ξ
∂φa
∂ξ

+ 1
4π2ξ2

∂2φa
∂η2 + 1

A2
∂2φa
∂ζ2

)
+

kyav(Yi−Y)R2

α(Y1−Y0)

(36i)

The Lewis number (Le) represent the ratio
between thermal and mass diffusivities, is a thickness
measurement of thermal and concentration layer,
representing the heat ability to be transported by
diffusion. The energy balance has two production
terms, the volumetric heat of respiration in the grain
and the loss heat due moisture vaporization. The
grain moisture balance has a term representing the
volumetric velocity by humidity generation due cereal
grain respiration and the water transferred to the air.
The air humidity balance has a term that represents the
moisture gain by the water release by the cereal grain.

Temperature boundary conditions for this silo
consist of an insulated base, and the surroundings
are affected by environmental temperature predicted
by the following equations reported by Carrera-
Rodrı́guez et al. (2011).

θ =

[
T1+T2

2 + T1 − T1+T2
2 cos

[(
4.5
16

) (
FoR2

3600α

)
− 16T2

T1

]]
− T0

T f − T0

(37)

Where

T1 =Tmaxexp
−
[(

Fo R2

86400α

)
− 159.823

]2

2(245.07)2 (38a)

T2 =Tmexp
−
[(

Fo R2

86400α

)
− 190.767

]2

2(131.334)2 (38b)

Equations (22a-c) involve both day-night and seasonal
cycles, therefore, they have the ability to predict
the ambient temperature over a year (January 1
to December 31). The variables required for the
calculation in the year 2009 in the state of Guanajuato,
Mexico are presented in Table 5 and equations (22a-c)
are adapt easily to predict environmental temperature
in other localities (Carrera-Rodriguez et al., 2011).
Mass boundary conditions assumed an impermeable
silo; therefore, the moisture interchanging between
silo and ambience is negligible. Hence, the boundary
conditions are as follows:

ξ = 0, Average, Average, Average, Average
(39a)
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ξ = 1,
∂ψr
∂ξ

= 0
ψθ = 0ψz = 0

, θ = f (Fo),
∂W
∂ξ

= 0,
∂ϕ

∂ξ
= 0

(39b)

η = 0,
∂ψ0

∂η
=
∂ψn

∂η
,
∂θ0

∂η
=
∂θn

∂η
,

∂W0

∂η
=
∂Wn

∂η
,
∂φ0

∂η
=
∂φn

∂η
(39c)

η = 1, ψ0 = ψn, θ0 = θn,W0 = Wn, φ0 = φn (39d)

ζ = 0,
ψr = 0
ψθ = 0
∂ψz
∂ζ

= 0
,
∂θ

∂ζ
= 0,

∂W
∂ζ

= 0,
∂φ

∂ζ
= 0 (39e)

ζ = 1,

ψr = 0
ψθ = 0
∂ψz

∂ζ
= 0

, θ = f (Fo),
∂W
∂ζ

= 0,
∂φ

∂ζ
= 0(39f)

Wood’s approximation was used for the vorticity
boundaries (Leonardi, 1984). The initial conditions are
as follows:

Fo = 0, ψ = 0, θ = 0, W = 0, φ = 0 (40)

Fig. 7 shows the geometric system and computational
domain, including the radial and axial coordinates,
with a grid of 9×18×9 collocation points yielding
21,780 algebraic equations, and a time-step size of
10−4 performing the simulation until one day of real
time (January 1). Due to the stiffness of the governing

equations, a relaxation factor λ = 0.3 was used. The
system reached convergence in 12,424,325 iterations
with a CPU time of 7 days. This CPU time can
be reduced substantially if one uses parallelization
computing in workstations or supercomputers. In
addition, the hardware, the operating systems and the
FORTRAN compilers are becoming more efficient.
Fig. 8 shows the flow patterns and temperature
contours, the solid lines in black represent the path
of the air inside the silo and the color contours
represented temperatures. At Fo = 0, the dynamic
temperature inside the silo is homogenous. There is an
increase in the temperature in the silo (approximately
10:00 h). This rise of the surrounding environmental
temperature accelerates the respiration heat source
leading to an increase in the temperature inside
the silo. During the warmest hours of the day
(approximately 12:00 h to 14:00 h), temperature
gradients concentrate on the sidewall and the surface
of grains. Similarly, when a cold cycle arrives, the
temperature decreases at the boundary due to the effect
of environmental boundary conditions as reported by
Balzi et al. (2008). The dynamic central part is the
least sensitive to environmental changes. These results
are consistent with those reported by Abalone et al.
(2006) and Carrera-Rodrı́guez et al. (2011). Flow
patterns show a recirculation near the boundaries of
cold air moving down the borders causing the bottom
to cool faster. The flow patterns spread across the silo,
and when the temperature cycle begins again, cold
flow patterns re-form near the borders, validating the
model proposed by Carrera-Rodrı́guez et al. (2011).
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Wood’s approximation was used for the vorticity
boundaries (Leonardi, 1984). The initial conditions
are as follows:

Fo = 0, ψ = 0, θ = 0, W = 0, φ = 0 (40)

Fig. 7 shows the geometric system and computational
domain, including the radial and axial coordinates,
with a grid of 9×18×9 collocation points yielding
21,780 algebraic equations, and a time-step size of
10−4 performing the simulation until one day of real
time (January 1). Due to the stiffness of the governing

equations, a relaxation factor λ = 0.3 was used. The
system reached convergence in 12,424,325 iterations
with a CPU time of 7 days. This CPU time can
be reduced substantially if one uses parallelization
computing in workstations or supercomputers. In
addition, the hardware, the operating systems and the
FORTRAN compilers are becoming more efficient.
Fig. 8 shows the flow patterns and temperature
contours, the solid lines in black represent the path
of the air inside the silo and the color contours
represented temperatures. At Fo = 0, the dynamic
temperature inside the silo is homogenous. There is an
increase in the temperature in the silo (approximately
10:00 h). This rise of the surrounding environmental
temperature accelerates the respiration heat source
leading to an increase in the temperature inside
the silo. During the warmest hours of the day
(approximately 12:00 h to 14:00 h), temperature
gradients concentrate on the sidewall and the surface
of grains. Similarly, when a cold cycle arrives, the
temperature decreases at the boundary due to the effect
of environmental boundary conditions as reported by
Balzi et al. (2008). The dynamic central part is the
least sensitive to environmental changes. These results
are consistent with those reported by Abalone et al.
(2006) and Carrera-Rodrı́guez et al. (2011). Flow
patterns show a recirculation near the boundaries of
cold air moving down the borders causing the bottom
to cool faster. The flow patterns spread across the silo,
and when the temperature cycle begins again, cold
flow patterns re-form near the borders, validating the
model proposed by Carrera-Rodrı́guez et al. (2011).

Table 5. Representative temperature values of the state of
Guanajuato, Mexico for 2009.

Variable ◦C Description

Tmax 30.7 Annual maximum temperature
Tmin 4.9 Annual minimum temperature
Tm 14.9 Maximum temperature, minimum annual
To 30.0 Initial grain temperature
T f 25.0 Initial temperature of the environment
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Fig. 8. Temperature contours for January 1 for: a) 00:00 h, b) 10:00 h, c) 12:00 h, d) 16:00 h, e) 
18:00 h, and f) 20:00 h. 
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Fig. 8. Temperature contours for January 1 for: a) 00:00 h, b) 10:00 h, c) 12:00 h, d) 16:00 h, e) 18:00 h, and f)
20:00 h.

Table 6. Use of computer memory for a defined mesh for the
different problems analyzed.

Mesh Nonlinear NEWIMP-C3 IMPLI-C3
equations Memory (Kb) Memory (Kb)

Case I 50×50×50 281,216 1,289,156 18,996
Case II 10×25×10 27,216 1,597,776 4,996
Case III 20×20×20 74,536 1,468,280 7,600
Case IV 21×23×21 119,025 1,638,072 10,028
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3.5 Memory use

We also performed a RAM memory study to illustrate
advantages of nonlinear relaxation versus classic
Newton-Raphson multivariate, designing a Newton-
Raphson computer code with similar subroutines and
operational characteristics of IMPLI-C3. This code
was named NEWIMP-C3 and his utilization will be
reported later. The comparison was performed with
the same type of discretization and an equal amount
of free memory, the different cases was carried out
with meshing close to use all free memory available,
depending on the problem, comparing the RAM
consumption. Table 6 shows the assigned memory
showed in the WindowsT M Task Manager, the large
difference between memory consumption illustrates
that nonlinear relaxation has a great advantage to
save memory and allowing address complex problems
that require large amount of nodes for enhancing the
accuracy of solution. We also observed that memory
consumption by nonlinear relaxation is only 0.3%-
1.5% of the memory required by Newton-Raphson,
so the nonlinear relaxation is a robust algorithm that
allows simulating complex problems that require large
number of nodes.

Conclusions
The IMPLI-C3 FORTRAN code was suitable to solve
problems involving 3-D parabolic nonlinear PDE,
particularly in the natural convection simulations,
decreasing substantially the amount of required RAM
(approximately 1 % of the memory required if
one uses Newton-Raphson), without any complex
algebraic-rearrangement of governing equations. This
allows the implementation of finer meshes that are
required in numerical analysis of complex highly
nonlinear problems, where the Newton method is
unfeasible due the amount of memory required
that often exceed the installed RAM. The use of
3-D orthogonal collocation for discretizing spatial
coordinates is an alternative methodology for solving
engineering problems with accuracy.
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Nomenclature

A ratio height/radius, L/R
av grain-air interfacial area, m2 m−3

aw water activity, dimensionless
e unit vector
C matrix used for the calculation of the

matrix A
D matrix used for the calculation of the

matrix B
F function
Fo Fourier number
Nu Nusselt number
NX number of internal nodes in X direction
NY number of internal nodes in Y direction
NZ number of internal nodes in Z direction
P polynomial
P pressure
P0 volumetric generation of water by

respiration, kg m−3 s−1

Pr Prandtl number
Q matrix used for the calculation of the

matrices A and B
Q0 volumetric heat of respiration of the

cereal grain, J −3 s−1

R cylinder radius
Ra Rayleigh number
T dependent variable, temperature
T independent variable matrix
U dimensionless velocity
X, x spatial coordinate in X direction
Y, y spatial coordinate in Y direction
Z, z spatial coordinate in Z direction
X grain moisture in dry basis, kg water/kg

dry solid
Yi absolute humidity in the grain-air

interface, kg water/kg dry air
Y absolute humidity, kg water/kg dry air

Subscripts
J local index node X
I local node index in Y
k, p auxiliary indexes
N number of internal nodes
0, 1 initial, final condition

Greek symbols
α thermal diffusivity of the porous

medium, ke f f /ρCp

ω vorticity
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ψ vector potential
θ temperature
λ relaxation factor
ξ dimensionless radial coordinate, r/R
φs dimensionless moisture grain, (X −

X0)/(X1 − X0)
φa dimensionless humidity in the air, (Y −

Y0)/(Y1 − Y0)
ζ dimensionless height coordinate, z/L
η dimensionless angular or azimuthal

coordinate, θ/2π
ρ density, kg/m3

ρa density of dry air, kg/m3

ρs sorghum grain density on dry basis,
kg/m3
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Jiménez-Islas H. and López-Isunza F. (1996).
PAR-COL2, Programa para resolver EDP
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México.

www.rmiq.org 277


	Introduction
	Methodology
	Results and discussion
	Case I: A system of two coupled nonlinear PDE with known analytical solution
	Case II: Free convection in a cylinder
	Case III: Dynamics of natural convection in a differentially heated cubic cavity
	Case IV: Effect of temperature on natural convection in grain storage in cylindrical silos
	Memory use 


